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INEQUALITIES FOR B-CONVOLUTION OPERATORS

AKIF D. GADJIEV 1, MUBARIZ G. HAJIBAYOV 2, §

Abstract. The B-convolution operators generated by the generalized shift operators associ-
ated with the Laplace-Bessel operator are considered and three inequalities are proved for these
operators. The first two inequalities are O’Neil type inequalities and third inequality is a gen-
eralization of the Young inequality for the B-convolution integrals. The last inequality is also
an extension of the Hardy-Littlewood-Sobolev theorem for the B-fractional integrals.
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1. Introduction and main results

It is well known (see, for example, [5]) that the generalized shift operator

T yf(x) = Ck,γ

π∫

0

. . .

π∫

0

f
(
(x′, y′)α, x′′ − y′′

)
dν(α),

where Ck,γ = π−
k
2

k∏
i=1

Γ(
γi+1

2
)

Γ(
γi
2

)
, (x′y′)α = ((x1, y1)α1 , . . . , (xk, yk)αk

),

(xi, yi)αi =
√

x2
i − 2xiyi cosαi + y2

i , 1 ≤ i ≤ k, (x′, x′′) ∈ Rk × Rn−k, 1 ≤ k ≤ n, dν(α) =

=
k∏

i=1
sinγi−1 αidαi, is closely related to the Laplace-Bessel differential operator ∆B =

k∑
i=1

Bi +

+
n∑

i=k+1

∂2

∂x2
i
, where Bi = ∂2

∂x2
i

+ γi
xi

∂
∂xi

and T y generates the corresponding B-convolution

(f ⊗ ϕ)γ(x) =
∫

Rn
k,+

f(y) (T yϕ(x)) (y′)γdy,

where γ = (γ1, . . . , γk) is a multi-index, (y′)γ = yγ1
1 · · · yγk

k and Rn
k,+ = {x = (x1, . . . , xn), x1 >

0, . . . , xk > 0}.
There are a lot of papers that studied B-convolution operators and related topics associated

with the Laplace-Bessel differential operator (see, for example [1, 3, 4, 5, 6, 7]).
In the present paper some inequalities for B-convolution operators are proved.
The following theorem was proved in [4].
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Theorem 1.1. Let f and ϕ be measurable functions on Rn, then for all t > 0 the following
inequality holds

(f ∗ ϕ)∗∗ (t) ≤ tf∗∗(t)ϕ∗∗(t) +

∞∫

t

f∗(s)ϕ∗(s)ds, (1)

where f ∗ ϕ(x) =
∫
Rn

f (x− y) ϕ (y) dy.

The inequality (1) is known as the O’Neil inequality. In [4], the O’Neil type inequality for the
B-convolution operators was obtained in the following form.

Theorem 1.2. [4] Let f and ϕ be measurable functions on Rn
k,+, then for all t > 0 the following

inequality holds

(f ⊗ ϕ)∗∗γ (t) ≤ Ck,γ


f∗∗γ (t)

t∫

0

ϕ∗∗γ (s)ds +

∞∫

t

f∗γ (s)ϕ∗∗γ (s)ds


 . (2)

A simple comparison shows that the inequality (2) is not an exact analogue of the inequality

(1). Moreover, since ϕ∗∗γ is non-increasing on (0,∞) and ϕ∗γ ≤ ϕ∗∗γ we have f∗∗γ (t)
t∫
0

ϕ∗∗γ (s)ds ≥

≥ tf∗∗γ (t)ϕ∗∗γ (t) and
∞∫
t

f∗γ (s)ϕ∗∗γ (s)ds ≥
∞∫
t

f∗γ (s)ϕ∗γ(s)ds.

The first main result of our paper is the following theorem which gives an exact analogue of
the O’Neil inequality for the B-convolution.

Theorem 1.3. Let f and ϕ be measurable functions on Rn
k,+, then for all t > 0 the following

inequality holds

(f ⊗ ϕ)∗∗γ (t) ≤ tf∗∗γ (t)ϕ∗∗γ (t) +

∞∫

t

f∗γ (s)ϕ∗γ(s)ds. (3)

In the following theorem we give another kind of estimate of the maximal function of the
rearrangement of the B-convolution operator.

Theorem 1.4. Let f and ϕ be measurable functions on Rn
k,+, then for all t > 0 the following

inequality holds

(f ⊗ ϕ)∗∗γ (t) ≤
∞∫

t

f∗∗γ (s)ϕ∗∗γ (s)ds. (4)

In Theorem 1.5 we obtain the generalization of the Young inequality for the B-convolution
operators.

Theorem 1.5. If f ∈ Lp1,q1,γ

(
Rn

k,+

)
, ϕ ∈ Lp2,q2,γ

(
Rn

k,+

)
and

1
p1

+
1
p2

> 1, then (f ⊗ ϕ) ∈

Lp0,q0,γ

(
Rn

k,+

)
where

1
p1

+
1
p2
− 1 =

1
p0

and q0 ≥ 1 is any number such that
1
q1

+
1
q2
≥ 1

q0
.

Moreover,

‖(f ⊗ ϕ)‖p0,q0,γ ≤ 3p0‖f‖p1,q1,γ‖ϕ‖p2,q2,γ . (5)

As an application, we check that the Hardy-Littlewood-Sobolev theorem for the B-fractional
integrals ([4]) is a particular case of Theorem 1.5.



A.D. GADJIEV, M.G. HAJIBAYOV : INEQUALITIES FOR B-CONVOLUTION... 43

2. Preliminaries

For 1 ≤ p ≤ ∞, the Lebesgue space Lp,γ

(
Rn

k,+

)
is defined as

Lp,γ

(
Rn

k,+

)
= {f : f is measurable onRn

k,+ , ‖f‖p,γ < ∞},
where ‖f‖p,γ is defined by

‖f‖p,γ =






 ∫
Rn

k,+

|f (x)|p (x′)γdx




1
p

, if 1 ≤ p < ∞

ess sup
x∈Rn

k,+

|f(x)|, if p = ∞.

Let 1 ≤ p ≤ ∞. If f is in Lp,γ

(
Rn

k,+

)
and ϕ is in L1,γ

(
Rn

k,+

)
, then the function f⊗ϕ belongs

to Lp,γ

(
Rn

k,+

)
and

‖f ⊗ ϕ‖p,γ ≤ ‖f‖p,γ‖ϕ‖1,γ .

For any measurable set E ∈ Rn
k,+, let |E|γ =

∫
E

(x′)γdx. Suppose f is a measurable function

defined on Rn
k,+. The distribution function f∗,γ of the function f is given by

f∗,γ(s) = |{x : x ∈ Rn
k,+, |f(x)| > s}|γ , for s ≥ 0.

The distribution function f∗,γ is non-negative, non-increasing and continuous from the right.
With the distribution function we associate the non-increasing rearrangement of f on [0,∞)
defined by

f∗γ (t) = inf{s > 0 : f∗,γ(s) ≤ t}.
Some elementary properties of f∗,γ and f∗γ are listed below. The proofs of them can be found

in [2].

(a) If f∗,γ is continuous and strictly decreasing, then f∗γ is the inverse of f∗,γ , that is f∗γ =
(f∗,γ)−1.

(b) f∗γ is continuous from the right.
(c) mf∗γ (s) = f∗,γ(s), for all s > 0, where mf∗γ is a distribution function of the function f∗γ

with respect to Lebesgue measure m on (0,∞), that is mf∗γ (s) =
∫

f∗γ (t)>s

dt.

(d)
t∫

0

f∗γ (s)ds = tf∗γ (t) +

∞∫

f∗γ (t)

f∗,γ(s)ds. (6)

(e) If f ∈ Lp,γ

(
Rn

k,+

)
, 1 ≤ p < ∞, then




∫

Rn
k,+

|f (x)|p (
x′

)γ
dx (x)




1
p

=


p

∞∫

0

sp−1f∗,γ(s)ds




1
p

=




∞∫

0

(
f∗γ (t)

)p
dt




1
p

.

Furthermore, in the case p = ∞,

ess sup
x∈Rn

|f(x)| = inf{s : f∗,γ(s) = 0} = f∗γ (0),
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f∗∗γ will denote the maximal function of f∗γ defined by

f∗∗γ (t) =
1
t

t∫

0

f∗γ (u)du, for t > 0.

Note the following properties of f∗∗γ :
(i) f∗∗γ is nonnegative, non-increasing and continuous on (0,∞) and f∗γ ≤ f∗∗γ .
(ii) (f + g)∗∗γ ≤ f∗∗γ + g∗∗γ .
(iii) If |fn| ↑ |f | a.e., then (fn)∗∗γ ↑ f∗∗γ .

For 1 ≤ p < ∞ and 1 ≤ q ≤ ∞, the Lorentz space Lp,q,γ

(
Rn

k,+

)
is defined as

Lp,q,γ

(
Rn

k,+

)
= {f : f is measurable onRn

k,+, ‖f‖p,q,γ < ∞},
where ‖f‖p,q,γ is defined by

‖f‖p,q,γ =





(∞∫
0

(
t

1
p f∗∗γ (t)

)q
dt
t

) 1
q

, 1 ≤ p < ∞, 1 ≤ q < ∞

sup
t>0

t
1
p f∗∗γ (t), 1 ≤ p ≤ ∞, q = ∞.

Note that if 1 < p ≤ ∞ then Lp,p,γ

(
Rn

k,+

)
= Lp,γ

(
Rn

k,+

)
. Moreover,

‖f‖p,γ ≤ ‖f‖p,p,γ ≤ p′‖f‖p,γ , (7)

where p′ =





p

p− 1
, 1 < p < ∞,

1, p = ∞.

For p > 1, the space Lp,∞,γ

(
Rn

k,+

)
is known as the Marcinkiewicz space or as Weak Lp,γ

(
Rn

k,+

)
.

Note also that L1,∞,γ

(
Rn

k,+

)
= L1,γ

(
Rn

k,+

)
.

If 1 < p < ∞ and 1 < q < r < ∞, then

Lp,q,γ

(
Rn

k,+

) ⊂ Lp,r,γ

(
Rn

k,+

)
.

Moreover,

‖f‖p,r,γ ≤
(

q

p

) 1
q
− 1

p

‖f‖p,q,γ . (8)

3. Proofs

Lemma 3.1. Let f and ϕ be measurable functions on Rn
k,+, where sup

x∈Rn
k,+

|f(x)| ≤ β and f

vanishes outside of a measurable set E with |E|γ = r. Then, for t > 0,

(f ⊗ ϕ)∗∗γ (t) ≤ βrϕ∗∗γ (r) (9)

and
(f ⊗ ϕ)∗∗γ (t) ≤ βrϕ∗∗γ (t). (10)

Proof. Without loss of generality we can assume that the functions f and ϕ are nonnegative.
Let h = f ⊗ ϕ. For a > 0, define

ϕa(x) =

{
ϕ(x), if ϕ(x) ≤ a

a, if ϕ(x) > a,

ϕa(x) = ϕ(x)− ϕa(x).
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Define functions h1 and h2 by

h = f ⊗ ϕa + f ⊗ ϕa = h1 + h2.

Then

sup
x∈Rn

k,+

h2(x) ≤ sup
x∈Rn

k,+

f(x)‖ϕa‖1,γ ≤ β

∞∫

a

ϕ∗,γ(s)ds, (11)

because ϕa(x) = 0 whenever ϕ(x) ≤ a. Also

sup
x∈Rn

k,+

h1(x) ≤ ‖f‖1,γ sup
x∈Rn

k,+

ϕa(x) ≤ βra (12)

and

‖h2‖1,γ ≤ ‖f‖1,γ‖ϕa‖1,γ ≤ βr

∞∫

a

ϕ∗,γ(s)ds. (13)

Now setting a = ϕ∗γ(r) in (11) we (12) and obtain

h∗∗γ (t) =
1
t

t∫

0

h∗γ(s)ds ≤ ‖h‖∞,γ ≤ ‖h1‖∞,γ + ‖h2‖∞,γ ≤

≤ βrϕ∗γ(r) + β

∞∫

ϕ∗γ(r)

ϕ∗,γ(s)ds.

Then using (6) we have the inequality (9).
Let us prove the inequality (10). For this purpose set a = ϕ∗γ(t), use (12) and (13). Then

th∗∗γ (t) =

t∫

0

h∗γ(s)ds ≤
t∫

0

(h1)∗γ(s)ds +

t∫

0

(h2)∗γ(s)ds ≤

≤ t‖h1‖∞,γ +

∞∫

0

(h2)∗γ(s)ds = t‖h1‖∞,γ + ‖h2‖1,γ ≤

≤ tβrϕ∗γ(t) + βr

∞∫

ϕ∗γ(t)

ϕ∗,γ(s)ds =

= βr


tϕ∗γ(t) +

∞∫

ϕ∗(t)

ϕ∗,γ(s)ds


 = βrtϕ∗∗γ (t).

Proof of Theorem 1.3. Without loss of generality we can assume that the functions f and
ϕ are nonnegative. Let h = f ⊗ ϕ and fix t > 0. Select a nondecreasing sequence {sn}+∞

−∞ such
that s0 = f∗γ (t), lim

n→+∞ sn = +∞, lim
n→−∞ sn = 0.

Let also

f(x) =
+∞∑

n=−∞
fn(x)

where

fn(x) =





0, if f(x) ≤ sn−1

f(x)− sn−1 if sn−1 < f(x) ≤ sn

sn − sn−1 if sn < f(x),
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Since the series converges absolutely we have

h =

(
+∞∑

n=−∞
fn

)
⊗ ϕ =

+∞∑
n=−∞

(fn ⊗ ϕ) .

Define functions h1 and h2 by

h =
+∞∑

n=1

(fn ⊗ ϕ) +
0∑

n=−∞
(fn ⊗ ϕ) = h1 + h2.

Estimate (h1)∗∗γ (t). For this purpose use the inequality (10) with E = {x : f(x) > sn−1} and
β = sn − sn−1. We have

(h1)∗∗γ (t) ≤
+∞∑

n=1

(
(fn ⊗ ϕ)∗∗γ

)
≤

≤
+∞∑

n=1

(sn − sn−1)f∗,γ(sn−1)ϕ∗∗γ (t) =

= ϕ∗∗γ (t)
+∞∑

n=1

f∗,γ(sn−1)(sn − sn−1).

Hence

(h1)∗∗γ (t) ≤ ϕ∗∗γ (t)

∞∫

f∗(t)

f∗,γ(s)ds. (14)

To estimate (h2)∗∗γ (t) we use the inequality (9). Then we can write

(h2)∗∗γ (t) ≤
0∑

n=−∞

(
(fn ⊗ ϕ)∗∗γ

)
≤

≤
+∞∑

n=1

(sn − sn−1)f∗,γ(sn−1)ϕ∗∗γ (f∗,γ(sn−1)) =

=
+∞∑

n=1

f∗,γ(sn−1)ϕ∗∗γ (f∗,γ(sn−1))(sn − sn−1).

This implies that

(h2)∗∗γ (t) ≤
f∗γ (t)∫

0

f∗,γ(s)ϕ∗∗γ (f∗,γ(s))ds. (15)

We will estimate the integral on the right-hand side of (15) by making the substitution s = f∗γ (ξ)
and integrating by parts. In order to justify the change of variable in the integral, consider a
Riemann sum

+∞∑

n=1

f∗,γ(sn−1)ϕ∗∗γ (f∗,γ(sn−1))(sn − sn−1),

that provides a close approximation to
f∗γ (t)∫

0

f∗,γ(s)ϕ∗∗γ (f∗,γ(s))ds.

By adding more points to the Riemann sum if necessary, we may assume that the left-hand end
point of each interval on which f∗,γ is constant is included among the sn that is contained in the
interior of an interval on which f∗,γ is constant, is deleted. It is now an easy matter to verify



A.D. GADJIEV, M.G. HAJIBAYOV : INEQUALITIES FOR B-CONVOLUTION... 47

that for each of the remaining sn there is precisely one element, ξn, such that sn = f∗γ (ξn) and
that f∗,γ

(
f∗γ (ξn)

)
= ξn. Therefore

+∞∑

n=1

f∗,γ(sn−1)ϕ∗∗γ (f∗,γ(sn−1))(sn − sn−1) =

=
+∞∑

n=1

ξn−1ϕ
∗∗
γ (ξn−1)(f∗γ (ξn)− f∗γ (ξn−1)),

which, by adding more points if necessary, provides a close approximation to

−
∞∫

t

ξϕ∗∗γ (ξ)df∗γ (ξ).

Recalling (15) we get

(h2)∗∗γ (t) ≤
f∗γ (t)∫

0

f∗,γ(s)ϕ∗∗γ (f∗,γ(s))ds = −
∞∫

t

ξϕ∗∗γ (ξ)df∗γ (ξ). (16)

Now let δ be an arbitrarily large number and choose ξj such that t = ξ1 ≤ ξ2 ≤ . . . ≤ ξj+1 = δ.
Then

δϕ∗∗γ (δ)f∗γ (δ)− tϕ∗∗γ (t)f∗γ (t) =

=
j∑

n=1

ξn+1ϕ
∗∗
γ (ξn+1)

(
f∗γ (ξn+1)− f∗γ (ξn)

)
+

+
j∑

n=1

f∗γ (ξn)
(
ϕ∗∗γ (ξn+1)ξn+1 − ϕ∗∗γ (ξn)ξn

)
=

=
j∑

n=1

ξn+1ϕ
∗∗
γ (ξn+1)

(
f∗γ (ξn+1)− f∗γ (ξn)

)
+

+
j∑

n=1

f∗γ (ξn)

ξn+1∫

ξn

ϕ∗γ(τ)dτ ≤

≤
j∑

n=1

ξn+1ϕ
∗∗
γ (ξn+1)

(
f∗γ (ξn+1)− f∗γ (ξn)

)
+

+
j∑

n=1

f∗γ (ξn)ϕ∗(ξn) (ξn+1 − ξn) .

This means that

δϕ∗∗γ (δ)f∗γ (δ)− tϕ∗∗γ (t)f∗γ (t) ≤
δ∫

t

ξϕ∗∗γ (ξ)df∗γ (ξ) +

δ∫

t

f∗γ (ξ)ϕ∗(ξ)dξ. (17)

Now we estimate the expression δϕ∗∗γ (δ)f∗γ (δ)− tϕ∗∗γ (t)f∗γ (t) below.

δϕ∗∗γ (δ)f∗γ (δ)− tϕ∗∗γ (t)f∗γ (t) =

=
j∑

n=1

ξnϕ∗∗γ (ξn)
(
f∗γ (ξn+1)− f∗γ (ξn)

)
+
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+
j∑

n=1

f∗γ (ξn+1)
(
ϕ∗∗γ (ξn+1)ξn+1 − ϕ∗∗γ (ξn)ξn

)
=

=
j∑

n=1

ξnϕ∗∗γ (ξn)
(
f∗γ (ξn+1)− f∗γ (ξn)

)
+

+
j∑

n=1

f∗γ (ξn+1)

ξn+1∫

ξn

ϕ∗γ(τ)dτ ≥

≥
j∑

n=1

ξnϕ∗∗γ (ξn)
(
f∗γ (ξn+1)− f∗γ (ξn)

)
+

+
j∑

n=1

f∗γ (ξn+1)ϕ∗γ(ξn+1) (ξn+1 − ξn) .

In other words

δϕ∗∗γ (δ)f∗γ (δ)− tϕ∗∗γ (t)f∗γ (t) ≥
δ∫

t

ξϕ∗∗γ (ξ)df∗γ (ξ) +

δ∫

t

f∗γ (ξ)ϕ∗γξ)dξ. (18)

From (17) and (18) we obtain

−
δ∫

t

ξϕ∗∗γ (ξ)df∗γ (ξ) = tϕ∗∗γ (t)f∗γ (t)− δϕ∗∗γ (δ)f∗γ (δ) +

δ∫

t

f∗γ (ξ)ϕ∗γξ)dξ ≤

≤ tϕ∗∗γ (t)f∗γ (t) +

δ∫

t

f∗γ (ξ)ϕ∗γξ)dξ.

Thus

−
∞∫

t

ξϕ∗∗γ (ξ)df∗γ (ξ) ≤ tϕ∗∗γ (t)f∗γ (t) +

∞∫

t

f∗γ (ξ)ϕ∗γξ)dξ.

By using this inequality and (16), we have

(h2)∗∗γ (t) ≤
f∗γ (t)∫

0

f∗,γ(s)ϕ∗∗γ (f∗,γ(s))ds ≤ tϕ∗∗γ (t)f∗γ (t) +

∞∫

t

f∗γ (ξ)ϕ∗γξ)dξ. (19)

Finally, from (14), (19) and (6) we get

h∗∗γ (t) ≤ (h1)∗∗γ (t) + (h2)∗∗γ (t) ≤

≤ ϕ∗∗γ (t)

∞∫

f∗γ (t)

f∗,γ(s)ds + tϕ∗∗γ (t)f∗γ (t) +

∞∫

t

f∗γ (ξ)ϕ∗γ(ξ)dξ =

= f∗γ (t)ϕ∗∗γ (t) +

∞∫

t

f∗γ (ξ)ϕ∗γξ)dξ =

= tf∗∗γ (t)ϕ∗∗γ (t) +

∞∫

t

f∗γ (ξ)ϕ∗γξ)dξ.
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Proof of Theorem 1.4. Assume that the integral on the right of (4) is finite. Then it is easy
to see that

sf∗∗γ (s)ϕ∗∗γ (s) → 0, as s →∞. (20)
Let h = f ⊗ ϕ. By Theorem 1.3 we have

h∗∗γ (t) ≤ tf∗∗γ (t)ϕ∗∗γ (t) +

∞∫

t

f∗γ (s)ϕ∗γ(s)ds ≤

≤ tf∗∗γ (t)ϕ∗∗γ (t) +

∞∫

t

f∗∗γ (s)ϕ∗γ(s)ds. (21)

Since f∗∗γ and ϕ∗∗γ are non-increasing,

df∗∗γ (s)
ds

= − 1
s2

s∫

0

f∗γ (τ)dτ +
1
s
f∗γ (s) =

1
s

(
f∗γ (s)− f∗∗γ (s)

)
, (22)

d(sϕ∗∗γ (s))
ds

= ϕ∗∗γ (s) + s

(
1
s

(
ϕ∗γ(s)− ϕ∗∗γ (s)

))
= ϕ∗γ(s) (23)

for m-almost all s. Since f∗∗γ and ϕ∗∗γ are absolutely continuous, we may use the method of the

integration by parts for
∞∫
t

f∗∗γ (s)d
(
sϕ∗∗γ (s)

)
. Using (22), (23) and (20) we obtain

∞∫

t

f∗∗γ (s)ϕ∗γ(s)ds =

∞∫

t

f∗∗γ (s)d
(
sϕ∗∗γ (s)

)
=

= f∗∗γ (s)sϕ∗∗γ (s)
∣∣∞
t
−

∞∫

t

sϕ∗∗γ (s)df∗∗γ (s) =

= −tf∗∗γ (t)ϕ∗∗γ (t) +

∞∫

t

ϕ∗∗γ (s)(f∗∗γ (s)− f∗γ (s))ds ≤

≤ −tf∗∗γ (t)ϕ∗∗γ (t) +

∞∫

t

ϕ∗∗γ (s)f∗∗γ (s)ds. (24)

By (21) and (24) we have

h∗∗γ (t) ≤
∞∫

t

f∗∗γ (s)ϕ∗∗γ (s)ds.

The proof is completed. The next lemma is a classical estimate known as Hardy’s inequality.

Lemma 3.2. ([2]) If 1 ≤ p < ∞, q > 0 and f is a nonnegative measurable function on (0,∞),
then

∞∫

0


1

s

s∫

0

f(τ)dτ




p

sp−q−1ds ≤
(

p

q

)q
∞∫

0

f(t)ptp−q−1dt. (25)

Proof of Theorem 1.5. Let h = f ⊗ ϕ.
Suppose that q1, q2, q0 are finite numbers. Then, by (4) we have

(‖h‖p0,q0,γ)q0 =

∞∫

0

(
s

1
p0 h∗∗γ (s)

)q0 ds

s
≤
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≤
∞∫

0


s

1
p0

∞∫

s

f∗∗γ (τ)ϕ∗∗γ (τ)dτ




q0

ds

s
=

=

∞∫

0


 1

t
1

p0

t∫

0

f∗∗γ

(
1
η

)
ϕ∗∗γ

(
1
η

)
dη

η2




q0

dt

t
.

The last equality was obtained by the change of variables s =
1
t

and τ =
1
η
. Using (25), we get

∞∫

0


 1

t
1

p0

t∫

0

f∗∗γ

(
1
η

)
ϕ∗∗γ

(
1
η

)
dη

η2




q0

dt

t
≤

≤ pq0
0

∞∫

0

(
t
1− 1

p0
f∗∗γ

(
1
t

)
ϕ∗∗γ

(
1
t

)

t2

)q0
dt

t
=

= pq0
0

∞∫

0

(
s
1+ 1

p0 f∗∗γ (s) ϕ∗∗γ (s)
)q0 ds

s

The last equality was obtained by the change of the variable t =
1
s
. Since

q0

q1
+

q0

q2
≥ 1, one can

find positive numbers n1 and n2 such that

1
n1

+
1
n2

= 1 and
1
n1

≤ q0

q1
,

1
n2

≤ q0

q2
.

By Hölder’s inequality we obtain

(‖h‖p0,q0,γ)q0 ≤ pq0
0

∞∫

0

(
s

1
p1 f∗∗γ (s)

)q0

s
1

n2

(
s

1
p2 ϕ∗∗γ (s)

)q0

s
1

n1

ds ≤

≤ pq0
0



∞∫

0

(
s

1
p1 f∗∗γ (s)

)q0n1 ds

s




1
n1



∞∫

0

(
s

1
p2 ϕ∗∗γ (s)

)q0n2 ds

s




1
n2

=

= pq0
0 (‖f‖p1,q0n1,γ)q0 (‖ϕ‖p2,q0n2,γ)q0 .

Finally, by (8) we have

‖h‖p0,q0,γ ≤ p0‖f‖p1,q0n1,γ‖ϕ‖p2,q0n2,γ ≤ p0e
1
e e

1
e ‖f‖p1,q1,γ‖ϕ‖p2,q2,γ ≤ 3p0‖f‖p1,q1,γ‖ϕ‖p2,q2,γ .

Similar reasoning leads to the desired result in case one or more of q1, q2, q0 are ∞. Theorem
1.5 is proved.

4. One particular case of theorem 1.5

Consider the following particular case of Theorem 1.5. If we take p1 =
n + |γ|

n + |γ| − α
with

α > 0, and q1 = ∞ in Theorem 1.5, then the condition
1
p1

+
1
p2

> 1 is equivalent to α <
n + |γ|

p2
,

and the condition
1
p1

+
1
p2
− 1 =

1
q0

is equivalent to
1
q0

=
1
p2
− α

n + |γ| . Thus we have the

following results.
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Corollary 4.1. If f ∈ L n+|γ|
n+|γ|−α

,∞,γ

(
Rn

k,+

)
, ϕ ∈ Lp,q,γ

(
Rn

k,+

)
, where 0 < α <

n + |γ|
p

, then

(f ⊗ ϕ) ∈ Lr,q,γ

(
Rn

k,+

)
and

‖(f ⊗ ϕ)‖r,q,γ ≤ 3r‖f‖ n+|γ|
n+|γ|−α

,∞,γ
‖ϕ‖p,q,γ , (26)

where
1
r

=
1
p
− α

n + |γ| .

Corollary 4.2. If f ∈ L n+|γ|
n+|γ|−α

,∞,γ

(
Rn

k,+

)
, ϕ ∈ Lp,γ

(
Rn

k,+

)
, where 0 < α <

n + |γ|
p

, then

(f ⊗ ϕ) ∈ Lr,γ

(
Rn

k,+

)
and

‖(f ⊗ ϕ)‖r,γ ≤ 3r
p

p− 1

(p

r

) 1
p
− 1

r ‖f‖ n+|γ|
n+|γ|−α

,∞,γ
‖ϕ‖p,γ . (27)

where
1
r

=
1
p
− α

n + |γ| .

Proof. From (7), (8) and (26) we have

‖(f ⊗ ϕ)‖r,γ ≤ ‖(f ⊗ ϕ)‖r,r,γ ≤
(p

r

) 1
p
− 1

r ‖(f ⊗ ϕ)‖r,p,γ

≤ 3r
(p

r

) 1
p
− 1

r ‖f‖ n+|γ|
n+|γ|−α

,∞,γ
‖ϕ‖p,p,γ ≤ 3r

p

p− 1

(p

r

) 1
p
− 1

r ‖f‖ n+|γ|
n+|γ|−α

,∞,γ
‖ϕ‖p,γ .

Suppose that Ω is homogeneous of degree zero on Rn
k,+, i.e., Ω(sx) = Ω(x) for all s > 0,

x ∈ Rn
k,+, and Ω ∈ L n+|γ|

n+|γ|−α

(
Sn−1

k,+

)
, where 0 < α < n + |γ|, and Sn−1

k,+ = {x ∈ Rn
k,+ : |x| = 1}.

Define the B-fractional integral (or Riesz potential) by

IΩ,α,γf(x) =
∫

Rn
k,+

Ω(y)
|y|n+|γ|−α

(T xf(y))
(
y′

)γ
dy.

It is easily checked that
Ω(y)

|y|n+|γ|−α
∈ L n+|γ|

n+|γ|−α
,∞,γ

(
Rn

k,+

)
, if 0 < α <

n + |γ|
p

. Then one can get

by Corollary 4.1 and Corollary 4.2 the Hardy-Littlewood-Sobolev theorem for the B-fractional
integrals on Lorentz and Lebesgue spaces (see [4]), respectively.
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